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The modification of a general purpose code for quantum mechanical calculations of molecular properties
(Q-Chem) to use a graphical processing unit (GPU) is reported. A 4.3x speedup of the resolution-of-the-
identity second-order Møller-Plesset perturbation theory (RI-MP2) execution time is observed in single point
energy calculations of linear alkanes. The code modification is accomplished using the compute unified basic
linear algebra subprograms (CUBLAS) library for an NVIDIA Quadro FX 5600 graphics card. Furthermore,
speedups of other matrix algebra based electronic structure calculations are anticipated as a result of using a
similar approach.

1. Introduction

Optimizing computational chemistry codes for central pro-
cessing units (CPUs) running both in serial and in parallel has
been the main focus of software developers in the scientific-
computing community, especially for massively parallel high-
performance computing systems. However, the increasing
demand for sophisticated graphics for video games, computer-
aided design (CAD), animation, and other applications is driving
the development of more and more powerful graphical process-
ing units (GPUs), which take advantage of data parallelism to
render graphics at high speeds. Although video cards have been
traditionally used only for graphics-intensive applications, they
have also been recently leveraged toward scientific-computing
problems, such as finite-difference time-domain algorithms,1

sorting algorithms for large databases,2 n-body problems,3 and
quantum Monte Carlo methods for chemical applications.4 In
these cases, programmers were required to construct GPU
algorithms using a limited set of operations originally intended
for computer graphics applications; however, the recent release
of graphics card manufacturer NVIDIA’s compute unified
device architecture (CUDA) development toolkit for some of
their high-end graphics cards allows developers to code
algorithms in a C-like language.5 CUDA greatly eases the
transition from using CPUs to general-purpose computing on
GPUs (GPGPU), as evidenced by the application of CUDA-
implemented algorithms ton-body problems in astrophysics6

and two-electron integrals in electronic structure problems.7

Additionally, recent abstracts have indicated speedups using
CUDA-implemented algorithms for Coulomb integral evalua-
tions8 and molecular dynamics.9

Along with CUDA, NVIDIA also released compute unified
basic linear algebra subprograms (CUBLAS) as a linear algebra
library for cards that support CUDA.10 In this work, we explore
using GPGPU computing for electronic structure applications
by executing matrix-matrix multiplication operations using
CUBLAS. In particular, we focus on reducing computational
time of the resolution-of-the-identity second-order Møller-
Plesset perturbation theory (RI-MP2),11-14 as implemented in
Q-Chem 3.1.15,16One of the widely used correlation treatments
for electronic structure calculations, MP2, evaluates two-electron
repulsion integrals of the form17

whereµ, ν, λ, andσ are orbital basis function (φ) indices. The
calculation of the energy (E) is dependent on

where i, j (a, b) are occupied (virtual) molecular orbitals that
are Fock operator eigenfunctions with eigenvaluesεi, εj (εa, εb),
andC is the molecular orbital coefficient matrix.

In RI-MP2, the evaluation time is reduced compared to
traditional MP2 calculations.11,12 This technique involves ap-
proximating the costly four-center two-electron integrals with
the use of two-center and three-center integrals. To evaluate
the integral, products of orbital basis functions are represented
as a linear combination of atom-centered auxiliary basis
functionsP
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When the Coulomb self-interaction of the residual density is
minimized, the four-center integrals are approximated as

This step is an approximate insertion of the resolution-of-the-
identity,

RI-MP2 is known to produce equilibrium geometries that rival
density functional theory (DFT) except for transition metal
compounds.18 On the other hand, RI-MP2 is also known to
capture long-range correlation effects, which are missing in
many popular density functionals. So for many weakly bound
systems, where DFT results might become questionable, RI-
MP2 stands as essentially the least expensive alternative.16,19

In section 2, we present an overview of GPGPU computing
and section 3 contains general results of matrix-matrix
multiplication times for both CPU and GPU implementations.

Figure 1. Average processing times for the multiplication of large matrices using a CPU and a GPU (as a coprocessor). Pairs of square matrices
are multiplied on an AMD dual-core CPU and on an NVIDIA Quadro FX 5600 GPU. (a) For matrices as small as 750 elements per side, the GPU
outperforms the CPU. For matrices with an area of a few million elements, a 13x speedup is obtained using the GPU. Inset: Matrices larger than
213 elements on a side cannot be directly multiplied in the GPU due to memory limitations, but splitting the matrices into smaller pieces before
GPU multiplication shows no appreciable difference in total time. Split-matrix timings are for the points to the right of the vertical line. (b) For
small matrices, the data transfer overhead of the slow PCI bus makes the GPU slower than the CPU implementation.
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In section 4, we describe performance improvements achieved
through the use of a GPU in RI-MP2 calculations of a series of
alkanes, showing the effect of changing the number of electrons
and the quality of the basis set used in the computation. Finally,
in section 5, we conclude with our resulting RI-MP2 speedup
and the potential impact that GPGPU computing can have on
electronic structure calculations.

2. General-Purpose Computing on Graphical Processing
Units

Graphical processors are able to outperform CPUs for certain
applications because of intrinsic parallelization within the device.

Multicore and parallel CPU architectures, though able to run
many instructions simultaneously, require computational threads
to be explicitly coded to make optimal use of the available
resources. Whereas a single-core CPU can only execute a single
instruction at a time (although several instructions may be in
the pipeline), a GPU can execute a single instruction on many
pieces of data at the same time, using a single instruction,
multiple data (SIMD) paradigm. This inherent parallelization
is a result of hardware architecture; graphics cards are composed
of an array of multiprocessors, each of which has its own section
of pipeline bandwidth. The graphics card used in this study has
16 multiprocessors, with each multiprocessor containing eight

Figure 2. Total RI-MP2 calculation time forn-octane andn-tetradecane using a CPU and a GPU (as a coprocessor). If a matrix edge is smaller
than the threshold, it is multiplied in the CPU; otherwise, it is multiplied in the GPU. For both cases the matrix grouping factorS is set to 5. (a)
For n-octane, larger thresholds revert back to CPU timings because there are no matrices with edges larger than 850 (vertical line) when using the
cc-pVDZ basis set. (b)n-Tetradecane calculations are 70% faster than the CPU in the 150-500 range of thresholds.
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processors and able to handle up to 768 threads concurrently.5

At any given clock cycle, each multiprocessor executes the same
thread on all eight processors, although each processor operates
on different data. The threads are periodically switched to
minimize the chance that a thread is waiting for the appropriate
data to be available. For problems that exhibit high levels of
data parallelism, GPUs can provide considerable computational
speedup because this hardware design allows multiple compu-
tational threads to execute quickly on a block of data that is
reused. This approach is ideal for rendering graphical data, but
some scientific-computing applications can also be adapted for
use on these powerful video cards.

Until recently, a major hurdle in developing general-purpose
applications for GPUs was the difficulty of programming for
them. The only access to the device was either through graphics
packages like OpenGL or by using a special assembly language
made for the card. Graphics packages provide the wrong
abstraction for nongraphical applications, making programs
written with them difficult to understand, maintain and use.
Writing assembly code directly for the device is a less than
ideal solution because of limits on the number of instructions
the card is able to process at a given time and the expertise
required to write code for a particular GPU. However, due to
the computational potential of GPUs for general computation,

Figure 3. RI-MP2 correlation energy obtained forn-octane andn-tetradecane using the cc-pVDZ basis set on a CPU and a GPU (as a coprocessor).
(a) Forn-octane, the GPU-implemented algorithm returns an energy only 0.11 mhartree off of the value obtained using the CPU alone. (b) For
n-tetradecane, the CPU-calculated energy is-2.02124 hartrees (not shown).
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programmers were interested in implementing linear algebra
routines on GPUs, even before the release of the CUDA
toolkit.20,21 Operations such as vector products and matrix-
matrix multiplication are easily parallelizable, have high levels
of data reuse, and are important building blocks for other
applications. With the release of the CUBLAS library, migrating
code written in C and Fortran to GPUs is now considerably
easier.

Despite decades of sustained progress in state-of-the-art of
quantum chemistry methodology, speeding up calculations and
thereby increasing the size of tractable molecules is an ongoing
activity. The use of GPUs provides an important opportunity
to gain further speedups when linear algebra operations are
heavily used, as in RI-MP2. For this study, we focus on the
effect of carrying out matrix-matrix multiplication using a GPU
because this operation is one of the more time-consuming

routines for CPUs to perform. The best known matrix-matrix
multiplication algorithm scales asO(n2.3) in computational time
with matrix edge length.22 The CUBLAS matrix-matrix
multiplication function scales asO(n3),10 nevertheless the scaling
prefactor is found to be considerably smaller than for comparable
CPU algorithms, as discussed in section 3.

3. Computational Setup and Matrix Multiplication
Comparison

The hardware setup consists of a single NVIDIA Quadro FX
5600 GPU, an AMD Dual Core Opteron 170 processor, a
LanParty NForce 4 motherboard, and two gigabytes of RAM.
The operating system used is Ubuntu 7.04 with a Linux 2.6
kernel and the Intel Fortran Compiler v10.0. To characterize
CUBLAS function performance, we obtained benchmarks of
the speed of matrix-matrix multiplication using both the host

Figure 4. Total and RI-MP2 correlation energy obtained forn-octane conformers using the cc-pVDZ basis set on a CPU and a GPU (as a coprocessor)
over a range of central bond torsional angles. (a) Total energy from single point calculations for the series of conformers. (b) RI-MP2 correlation
energy for the series of conformers shows that the average random error introduced by the GPU calculations is 0.08 mhartree (rmsd: 0.1 mhartree,
MAD: 0.05 mhartree).
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CPU (regular BLAS function) and the GPU (CUBLAS func-
tion). Figure 1a shows the average (N ) 20) computational times
to multiply a pair of square matrices with 300-4000 elements
on a side. To multiply a pair of 300 by 300 matrices, both the
CPU and the GPU took only a hundredth of a second. As the
size of the matrices increases, the benefit of the GPU becomes
apparent. Large matrices can be multiplied about thirteen times
faster on the GPU than on the host CPU, a significant gain for
a moderate programming effort. We separately analyzed the
times of preprocessing, actual matrix multiplication and post-
processing for the CPU and the GPU. The preprocessing and
postprocessing times are due mostly to data transfer between
the motherboard and the GPU memory. The scaling with matrix
size is the same for a given stage in both units, but the prefactor
is reduced 20-fold for the GPU in the case of the multiplication
step. This reduction in evaluation time overwhelms the modest
increase in pre- and postprocessing time for the GPU and the
advantage of using the GPU for this function increases for larger
matrices.

A challenge to effectively using GPUs for linear algebra
occurs when matrices become very large. The GPU on-board
memory is a finite resource, which can restrict the number of
matrix elements that can be passed to the card. Although the
Quadro FX 5600 has 1.5 gigabytes of on-board RAM, the
memory required to multiply very large matrices can exceed
this limit, causing the device to crash. When we attempted to
multiply matrices larger than 8192 elements on a side, the
memory on the device was exhausted and the CUBLAS library
process stopped. To get around this memory limitation, the large
matrices can be split into pieces before being sent to the GPU,
multiplied there, and then put back together using the CPU.
The inset of Figure 1a shows the result of using this method on
a hardware system consisting of a single NVIDIA Quadro FX
5600 GPU, an AMD Dual Core Athlon X2 processor, an Asus
M2N32-SLI Deluxe motherboard, and 4 gigabytes of RAM.

Data points for matrices smaller than 8192 elements on a side
are multiplied using the standard library call, and points for
larger matrices use the method described. Though a little
performance is lost transferring data in the bus, multiplying these
very large matrices in multiple passes on the GPU is still
significantly faster than using just the CPU.

In electronic structure applications, however, many of the
matrices that need to be multiplied are much smaller than a
thousand elements on a side. Figure 1b shows average (N )
20) computational times for multiplying a pair of square matrices
that have only 20-300 elements on a side. The major bottleneck
for using the GPU is revealed by this figuresthe PCI bus
latency. Data communication between the GPU and the CPU
is conducted via a NVIDIA CK804 PCI x16 Bridge (Clock 66
MHz, Width 32 bits), which is considerably slower than typical
memory access for a CPU. The time it takes to transfer data
over the bus is long enough to make using a GPU for matrix
multiplication on matrices smaller than two hundred elements
on a side inefficient. Our approach, therefore, is to set a lower
bound on when to use the graphics card processors, similar to
Yasuda’s use of a threshold parameter to control integral
evaluations.7 If a resultant matrix has an area smaller than the
square of a cutoff threshold, it is multiplied using the CPU and
all matrices larger than the cutoff are multiplied using the GPU.
Because electronic structure calculations use rectangular ma-
trices, the optimal cutoff threshold is not obvious, as discussed
in the next section.

4. Speedups of RI-MP2 Calculations on a Series of
Alkanes

Within Q-Chem 3.1, the RI-MP2 correlation energy is
evaluated in five steps. The steps are listed below with the
following abbreviations: atomic basis functions, auxiliary basis
functions, occupied and virtual orbitals have the same notation

Figure 5. Total processing times for the calculation of RI-MP2 single point energies for a series of linear alkanes using the cc-pVDZ basis set on
a CPU and a GPU (as a coprocessor). The series of linear alkanes with even numbers of carbon atoms from octane (C8H18) to doeicosane (C22H46)
is investigated. Speedups of 1.5x to 4.3x (average 2.7x) are achieved throughout the series with an average RI-MP2 correlation energy error of 0.3
mhartree.
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as in section 1,N (M) is the number of atomic (auxiliary) basis
functions,O (V) is the number of occupied (virtual) orbitals,
andR, â, γ, andη are prefactors for the estimated computational
cost.

Step 1: Evaluate (P|Q), which are two-electron repulsion
integrals between two auxiliary basis functions and form the
square root of its inverse matrix, (P|Q)-1/2. The estimated
computational cost of this step isRM2 + âM3.

Step 2: Evaluate (µν|P), which are two-electron repulsion
integrals between a pair of normal atomic basis functions; and

an auxiliary basis function then transform the three-center
integrals into (ia|P). The estimated computational cost of this
step isγN2M + 2N2MO + 2NMOV.

Step 3: Form Bia,Q via

The estimated computational cost of this step is 2M2OV.

Figure 6. Computational time for the each step of the RI-MP2 calculation is plotted for a series of linear alkanes. The time required for step 5 is
less than 1 s, which is smaller than the visible scale of the graphs. (a) The breakdown of processing times for each step on the CPU shows that the
matrix-matrix multiplication is 78% of the total calculation time. (b) Using the GPU as a coprocessor, the cost of step 4 is reduced to only 50%
of the total computational time.

Bia,Q ) ∑
P

AUX

(ia|P)(P|Q)-1/2
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Step 4: Form (ia|jb̃) via

The estimated computational cost of this step isMO2V2.
Step 5: Evaluate RI-MP2 energy using

The estimated computational cost of this step isηO2V2.
We observe that steps 1 and 5 contribute little to the total

CPU time, whereas step 2 and 3, which both scale asO(n4)
with the system size, have comparable costs. Step 4, which
scales asO(n5), dominates the RI-MP2 energy evaluation, and
becomes our primary concern in this study. In the original code
for step 4 within Q-Chem 3.1, there is a loop over (i, j) pairs,
and within the loop, a matrix of sizeMV is multiplied to the
transpose of a matrix of the same size. In this work, we introduce
a new parameter,S, which groupsSoccupied orbitals together
during the computation and, within each loop, results in the
total matrix size ofM(SV). On the basis of speedups obtained
for n-octane (which uses the smallest matrices of the series),S
is set to five for alln-alkane calculations. This simple code
modification stacks matrices that would otherwise be smaller
than the cutoff threshold together, allowing the GPU to be used
more effectively.

Figure 2 shows the speedup in RI-MP2 calculations obtained
simply by modifying the code as described above and using
the GPU as a coprocessor to execute the matrix-matrix
multiplication in step 4. Results are shown forn-octane (Figure
2a) and forn-tetradecane (Figure 2b), both treated with a cc-
pVDZ basis set.23 Total computational time is plotted against
the threshold used to send matrices to the GPU with CPU time
for each calculation shown as a reference. As seen in Figure
2a, the value of the threshold must be set smaller than the
maximum matrix size to ensure that matrices are sent to the
GPU (around 850 forn-octane with the cc-pVDZ basis andS
) 5). For larger systems, such asn-tetradecane (Figure 2b),
the maximum matrix size is greater than 1000, so a speedup is
obtained for all threshold values. For then-alkane series
comparison, a threshold of 350 is used. However, it should be
noted that the value ofS and the cutoff threshold can be
optimized to minimize the impact of bus latency discussed in
section 3. Although systems as large as C22H46 with the cc-
pVDZ basis set did not reach the limit of the graphics card
memory, calculations as small as C14H34 with the cc-pVTZ basis
set23 cause the device to crash. Code modifications are currently
underway to incorporate the method described in section 3 into
Q-Chem 3.1 to treat larger systems with more accurate basis
sets.

A price to pay for the speedup achieved by using the GPU is
some loss of precision (see Figure 3). Current GPUs only
support 32-bit single precision floating point numbers instead
of the 64-bit double precision numbers used by modern CPUs;
however, this is most likely a temporary setback because
manufacturers have promised double precision support in future
generations of GPUs. The precision degradation due to single
precision is not of great concern with our RI-MP2 calculations
as long as an appropriate cutoff threshold is used. In general,
the energies obtained using single precision on the graphics card

were only slightly different from the ones found using double
precision on the CPU. As seen in Figure 3, the difference of
the RI-MP2 correlation energy using the GPU from that found
using double precision using the CPU is on the order of 10-4

hartree for bothn-octane andn-decane. Figure 4 shows the total
and RI-MP2 correlation energy for a series of conformers of
n-octane as the torsional angle of the central bond is rotated.
The average error introduced in the RI-MP2 correlation energy
is only 0.08 mhartree (Figure 4b), preserving the trend of the
CPU calculation.

The general picture of the speedups obtained by combining
the use of the GPU and the CPU can be seen in Figure 5, where
we report calculations of single point energies with the RI-MP2
method for a series of linear alkanes using the cc-pVDZ basis
set. Energies for alkanes with an even number of carbon atoms
from octane (C8H18) to doeicosane (C22H46) are calculated.
Speedups of 1.5x (35%) to 4.3x (77%), with an average of 2.7x
(63%), are achieved throughout the series. This is a significant
increase of efficiency in molecular calculations with no con-
siderable expense of precision. Even with GPUs that only work
with single precision arithmetic, the average error in RI-MP2
correlation energy is 0.3 mhartree (rmsd: 0.5 mhartree, MAD:
0.3 mhartree). This is only 6× 10-5% of the average total
energy.

To show the effect of using the GPU for matrix-matrix
multiplication in RI-MP2 calculations, Figure 6 plots the
computational time required by each RI-MP2 step for the series
of alkanes. For C22H46, a system with 178 electrons, the time
required to evaluate step 4 of the RI-MP2 calculation on the
CPU is 78% of the total (Figure 6a). Using the GPU (Figure
6b) reduces the time spent on this step to 50% of the total RI-
MP2 time. The next largest contribution to the calculation
becomes step 2, which increases from 10% to 35% of the RI-
MP2 time when the GPU is used for doeicosane. This step
involves the evaluation of three-center integrals and subsequent
two-index transformations. For the evaluation of three-center
integrals, in the future we can potentially adapt the approach
developed by Yasuda for the evaluation of two-center integrals
to approximate Coulomb integrals. We expect that by combining
the two approaches, a more significant speedup can be obtained
for RI-MP2 treatment of electron correlation with only a
moderate programing effort.

5. Conclusions

In this article, we demonstrated that simply rerouting one
linear algebra routine in the evaluation of RI-MP2 correlation
from a CPU to a GPU achieved a speedup of 4.3x for the
calculation of the single point energy of doeicosane. To the best
of our knowledge, this is the first implementation of a CUBLAS
library function in electronic structure codes. The C-like
language of CUDA allows easy migration of code segments to
implementations using a GPU. The resulting price/performance
is very competitive; the parallelization offered by graphical
processors will allow scientific calculations that are usually run
on clusters and special-purpose supercomputers to be evaluated
at a fraction of the cost. Efforts to reduce computational time
even more by implementing the two-electron repulsion integrals,
as well as other linear-algebra operations in the code (matrix-
vector multiplication and diagonalization routines), are under-
way. The recent availability of the CUBLAS library is an
encouraging development for electronic structure developers.
This level of abstraction allowed us to encapsulate the linear
algebra calls of Q-Chem in such a way that all matrix-matrix
multiplications are carried out with CUBLAS with minimal code

(ia|jb̃) ≈ ∑
Q

AUX

Bia,QBjb,Q

ERI-MP2
(2) ) ∑

ijab

(ia|jb̃)2 +
1

2
[(ia|jb̃) - (ib|jã)]2

εi + εj - εa - εb
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modification. This encapsulation strategy allows for faster
adoption of other novel technologies such as other types of linear
algebra coprocessing units as they become available. The
challenge left for the electronic structure community is to
restructure and adapt the current algorithms to environments
where the linear algebra operations can be carried out expedi-
tiously aided by GPUs or other similar devices such as field-
programmable gate arrays (FGPAs).
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